Project Runway

There are two major components to this puzzle, both of which derive from the title, *Project Runway*. The first is obvious: models walk on runways (also known as catwalks). The second involves the second meaning of the word “runway” — that which aircraft land on.

The puzzle consists of lines of “code”. Each line includes the name of a famous (or up-and-coming) female model, followed by a large integer number with a forward slash either before or after the number. The first line of code includes the hint (feet2) after the number.

Solving this puzzle is a multi-step process. Some steps follow logically from the previous; others require a bit of inspiration (or guesswork).

(It may help to realize that each line of code likely corresponds with a letter in the puzzle’s answer. In the puzzle, for instance, the model Linda Evangelista is mentioned twice. The only difference between the two lines of code that include her name is the position of the forward slash. One can infer correctly that the lines of code that include Linda Evangelista correspond to letters — two different letters, though, as the position of the slash is not consistent between the two.)

How to solve the puzzle:

I. The first step requires one to recognize that the introduction sentence is a clue. What piece of information can be uniquely attached to a person — a piece of information that is known and does not change? Place of birth! ... hence the “where they came from” hint. The solver must research and find each model’s birthplace.

 ex: Bette Franke was born in Heemskerk, North Holland, The Netherlands
 ex: Linda Evangelista was born in St. Catharine’s, Ontario, Canada

Simply put, one is now done with the “fashionista” half of the puzzle. The models’ names are useful only for their birthplaces. The fashion theme was a red herring.

II. The second step requires the solver to realize that the next half of the puzzle involves aviation. After all, runways are rectangular strips of asphalt or concrete or grass that aircraft land on. Runways have *dimensions* and *area*. The area of a runway, naturally, would be measured in feet2. One might also notice the “careers first took off” clue in the introduction. With these clues in mind, the solver should realize that each number refers to the area-footprint of a particular runway, somewhere in the world. But exactly which airport in the world has the runway that the number refers to?

 ex: 187275 refers to a runway that is 187275 feet2 in area

III. The third step requires the solver to use the city and town names from the first step to locate the airport that corresponds with each line of code. I
purposely chose models born in cities or towns that have a corresponding airport. In cases with any ambiguity, one should choose the closest paved public-use airport. Sites such as Wikipedia, Google Maps, and airnav.com are useful for this task.

ex: Bette Franke was born in Heemskerk, North Holland, The Netherlands; the obvious airport near to Heemskerk is Amsterdam’s Schiphol International Airport (EHAM).

ex: Linda Evangelista was born in St. Catharine’s, Ontario, Canada; the obvious airport is Niagara District/St. Catharine’s Airport (CYSN).

IV. The fourth step requires the solver to identify which runway at the airport corresponds with the “area number”. Sites such as airnav.com (for U.S. airports) and worldaerodata.com (for airports outside the U.S.) can be used for this task. This is easier shown by example.

ex: Amsterdam Schiphol International Airport (EHAM) has six runways:
Runway 4/22, 6608 feet long by 148 feet wide
Runway 6/24, 11483 feet by 148 feet
Runway 9/27, 11329 feet by 148 feet
Runway 18C/36C, 10826 feet by 148 feet
Runway 18R/36L, 12467 feet by 198 feet
Runway 18L/36R, 11155 feet by 148 feet

Only one runway matches up with the “area number” (977984 feet²) — Runway 4/22, which is 6608’ x 148’.

6608 * 148 = 977984

ex: Niagara District/St. Catharine’s Airport (CYSN) has three runways:
Runway 1/19, 2497 feet long by 75 feet wide
Runway 6/24, 5000 feet by 150 feet
Runway 11/29, 1989 feet by 75 feet

Only one runway matches up with the “area number” (187275 feet²) — Runway 1/19, which is 2497’ x 75’.

2497 * 75 = 187275

V. The fifth step involves a bit of aviation knowledge or simply good guesswork. Background: runway are named by their compass orientation. A runway that runs east-west, for instance, runs in the 90° and 270° directions (0° or 360° is north; 90° is east; 180° is south; 270° is west). In the aviation world, that runway would be called Runway 9/27 (the directions are rounded to the nearest 10° and the trailing zero is dropped). A runway running NE-SW might be Runway 4/22, or Runway 5/23. A north-south runway would be Runway 18/36 (note: 18/36, not 0/18 or 18/0). At this point, the forward slash that precedes or follows each number in the
puzzle should make sense. If the slash follows the number, the solver should use the runway number that has a slash following it. If the slash precedes the number, the solver should use the runway number that has a slash preceding it.

- ex: given Amsterdam Schiphol International Airport’s Runway 4/22, and the corresponding line from the puzzle: Bette Franke 977984/, the solver should note the number 4 (not 22).
- ex: given St. Catharine’s Airport’s Runway 1/19, and the corresponding line from the puzzle: Linda Evangelista /187275, the solver should note the number 19 (not 1).
- ex: however, given the line: Linda Evangelista 187275/, the solver should note the number 1 (not 1).

VI. The sixth, and final, part is simple. Use a basic A-Z / 1-26 cipher to decode the solution. 1 = A, 2 = B, 3 = C, 4 = D, 5 = E; etc. Runway numbers 27 and above were purposely not included in the puzzle.

- ex: given the number 4, the corresponding letter is D.
- ex: given the number 19, the corresponding letter is S.